Cost- and Energy-Aware Multi-Flow Mobile Data Offloading Using Markov Decision Process
نویسندگان
چکیده
With the rapid increase in demand for mobile data, mobile network operators are trying to expand wireless network capacity by deploying wireless local area network (LAN) hotspots on which they can offload their mobile traffic. However, these network-centric methods usually do not fulfill the interests of mobile users (MUs). Taking into consideration many issues, MUs should be able to decide whether to offload their traffic to a complementary wireless LAN. Our previous work studied single-flow wireless LAN offloading from a MU’s perspective by considering delay-tolerance of traffic, monetary cost and energy consumption. In this paper, we study the multi-flow mobile data offloading problem from a MU’s perspective in which a MU has multiple applications to download data simultaneously from remote servers, and different applications’ data have different deadlines. We formulate the wireless LAN offloading problem as a finite-horizon discrete-time Markov decision process (MDP) and establish an optimal policy by a dynamic programming based algorithm. Since the time complexity of the dynamic programming based offloading algorithm is still high, we propose a low time complexity heuristic offloading algorithm with performance sacrifice. Extensive simulations are conducted to validate our proposed offloading
منابع مشابه
Energy-efficient multisite offloading policy using Markov decision process for mobile cloud computing
Mobile systems, such as smartphones, are becoming the primary platform of choice for a user’s computational needs. However, mobile devices still suffer from limited resources such as battery life and processor performance. To address these limitations, a popular approach used in mobile cloud computing is computation offloading, where resourceintensivemobile components are offloaded tomore resou...
متن کاملDesign and Evaluation of a Method for Partitioning and Offloading Web-based Applications in Mobile Systems with Bandwidth Constraints
Computation offloading is known to be among the effective solutions of running heavy applications on smart mobile devices. However, irregular changes of a mobile data rate have direct impacts on code partitioning when offloading is in progress. It is believed that once a rate-adaptive partitioning performed, the replication of such substantial processes due to bandwidth fluctuation can be avoid...
متن کاملA Deep Reinforcement Learning Based Approach for Cost- and Energy-Aware Multi-Flow Mobile Data Offloading
With the rapid increase in demand for mobile data, mobile network operators are trying to expand wireless network capacity by deploying wireless local area network (LAN) hotspots on to which they can offload their mobile traffic. However, these network-centric methods usually do not fulfill the interests of mobile users (MUs). Taking into consideration many issues such as different applications...
متن کاملPerformance Optimization in Mobile-Edge Computing via Deep Reinforcement Learning
To improve the quality of computation experience for mobile devices, mobile-edge computing (MEC) is emerging as a promising paradigm by providing computing capabilities within radio access networks in close proximity. Nevertheless, the design of computation offloading policies for a MEC system remains challenging. Specifically, whether to execute an arriving computation task at local mobile dev...
متن کاملTraffic Offloading Improvements in Mobile Networks
The exponential increase in mobile IP data usage causes a shortage in the mobile bandwidth. Traffic offloading is regarded as a solution to the exploding growth of mobile broadband data traffic in the mobile networks. In this paper, a content aware traffic offload scheme is proposed to implement using multiple access paths simultaneously. Moreover, the process flow based-on the scheme in Long T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 101-B شماره
صفحات -
تاریخ انتشار 2018